1、基本信息
姓名:牛薇
职务:教师
职称:副教授
办公地点:二号楼411
电话:82339771
电子邮件:Wei.Niu@buaa.edu.cn
个人主页:(如有)http://www-polsys.lip6.fr/~wei/
2、教育背景:
巴黎第六大学计算机实验室 博士
9001jcc金沙以诚为本数学与系统科学学院 本科及硕士
3、工作经历:
2012年起北航9001jcc金沙以诚为本教师
4、主讲课程:
数学建模、概率统计
5、研究领域方向:
1. 符号计算
2. 代数生物学
6、代表性研究成果(论文、论著、专利等)
1、Analysis of Codimension 2 Bifurcations for High-dimensional DiscreteSystems Using Symbolic Computation Methods (with J. Shi and C. Mou). AppliedMathematics and Computation, Accepted, 2015.
2、Analysis of All time-delay Stability for Biological Systems UsingSymbolic Computation Methods (with J. Liu) (in Chinese). Journal of BeijingUniversity of Aeronautics and Astronautics, Accepted, 2015.
3、Application of Triangular Set Methods to Detection of Steady Statesand Their Numbers for Finite Biological Models (with C. Mou) (in Chinese).Computer Applications and Software 31(1): 278–282, 2014.
4、Reconstructing Chemical Reaction Networks by Solving Boolean PolynomialSystems (with C. Mou). Mathematical Aspects of Computer and InformationSciences 2013 (MACIS 2013). Nanning, China, December 11–13, 2013.
5、Algebraic Analysis of Stability and Bifurcation of a Self-assemblingMicelle System (with D. Wang). Applied Mathematics and Computation 219(1):108–121, 2012.
Stability Analysis for Discrete BiologicalModels Using Algebraic Methods (with X. Li, C. Mou and D. Wang). Mathematics inComputer Science 5(3):247–262,2011.
6、Algebraic Analysis of Bifurcation and Limit Cycles for BiologicalSystems (with D. Wang). In: Proceedings of the 3rd International Conference onAlgebraic Biology (K. Horimoto, G. Regensburger, M. Rosenkranz, and H. Yoshida,eds.), LNCS 5147, pp. 156–171. Springer–Verlag, Berlin Heidelberg (2008).
7、Algebraic Approaches to Stability Analysis of Biological Systems(with D. Wang). Mathematics in Computer Science 1(3): 507–539 (2008).